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1. Introduction
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MicroMicro--instabilities in tokamak plasmasinstabilities in tokamak plasmas

Temperature gradient driven modes in tokamaks
– Ion temperature gradient driven (ITG) modes k⊥

-1~ρi

– Electron temperature gradient driven (ETG) modes k⊥
-1~ρe,λDe

Trapped particle modes, Electromagnetic modes, etc…
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Various zonal flow instabilities
(Diamond,IAEA98, Chen,POP00, Rogers,PRL00)

Nonlinear upshift of effective critical ITG by zonal flows
(Dimits,POP00)

Linear damping mechanism of zonal flows
(Rosenbluth-Hinton,PRL98)

Toroidal ITG turbulence simulation with and without zonal flows
(Lin,Science98, Diamond,NF01)
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Structure formations in microscopic ETG turbulenceStructure formations in microscopic ETG turbulence

Safety factor q(ψ) = Bϕ /Bθ

Toroidal ETG turbulence simulation in reversed shear tokamak
(Idomura,NF05)

ψ

Zonal flows Streamers

Zero shear Positive shear

Enhanced transport by streamers in positive magnetic shear
(Jenko,POP00, Dorland,PRL00)

Transport reduction by zonal flows in reversed magnetic shear
(Idomura,NF05,POP06)

Various secondary/tertiary instabilities for streamers/zonal flows
(Idomura,POP00, Jenko,PRL02, Holland,POP02, Li,POP02)
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Linear ballooning theory with equilibrium profile shear effects
(Connor,PRL93, Romanelli,PFB93, Kim,PRL94)

Shearing effects of equilibrium ExB flows on size scaling
(Garbet,POP96, Waltz,POP02)

Turbulence spreading into less unstable or stable regions
(Lin,POP04, Hahm,PPCF04, Waltz,POP05)

Plasma size scaling of ITG turbulence Plasma size scaling of ITG turbulence 
Transition of plasma size scaling from Bohm to gyro-Bohm
(Lin,PRL02, Candy,POP04)
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Simulation for multiSimulation for multi--scale tokamak microscale tokamak micro--turbulenceturbulence

Ion scale turbulence
~5mm,~1μs

Electron turbulence
~0.1mm,~10ns

Profile formation
~10cm,~10ms

profile
formation

turbulence
suppression

ITG-TEM-ETG
spectral interaction

Future issues addressed using first principle simulations
– Formation of transport barriers 
– ITG-TEM-ETG, electromagnetic turbulence
– Edge/SOL turbulence
Advanced multi-scale gyrokinetic simulations are needed
Purpose of this lecture
– To explain physical and numerical models of GK simulations
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2. Gyrokinetic model
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Physical properties of turbulent fusion plasmasPhysical properties of turbulent fusion plasmas

Fusion plasma (n~1019m-3, T~10keV) is weakly coupled plasma
– Low collisionality ~1kHz, mean free path ~10km
– Orbit effects and wave-particle resonance are important
5D kinetic model is needed instead of 3D fluid model

Turbulent fluctuations are considered to follow the ordering
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SpatioSpatio--temporal scales in fusion plasmastemporal scales in fusion plasmas
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What is a physical model appropriate for studying micro-turbulence?
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Primitive kinetic model of weakly coupled plasmaPrimitive kinetic model of weakly coupled plasma

Vlasov-Poisson system in canonical coordinates ZCC=(t;q,p)

– Continuity equation of f transported by Hamiltonian flows in 
6D phase space

– Spatio-temporal scales are given by ~λDe and ~ωpe

Very expensive model for studying tokamak micro-turbulence
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Gyrokinetic model for tokamak microGyrokinetic model for tokamak micro--turbulenceturbulence

Ion
+Force -

Electron
Field B

gyro-motion due to Lorenz force

Fast gyro-motion ~1GHz + slow drift-motion ~100kHz
Gyro-motion is adiabatic (magnetic moment is conserved)

Gyro-radius

Gyro-centre orbit

Gyrokinetics

6D phase space (R,v//,μ,α) 5D phase space (R,v//,μ)

Field line

Minimum scale of turbulence
Ion ~5mm, Electron ~0.1mm

Fast gyro-motion is adiabatic
Gyrokinetics in 5D phase space
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Particle motion in guidingParticle motion in guiding--centre coordinates centre coordinates 
Lagrangian in canonical coordinates ZCC=(t;q,p)

Guiding-centre coordinates ZGY

Lagrangian in ZGC=(t;RGC,v//GC,μGC,αGC)
(Littlejohn, J. Math. Phys.79, PF81, J. Plasma Phys.83)

– Fast α-dependence in HGC (μGC is approximate invariant)
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Reduction of problem to 5D phase space Reduction of problem to 5D phase space 
Find gyro-centre coordinates ZGY using near identity transformations
(Cary-Littlejohn,Ann. Phys.83, Brizard-Hahm,Rev. Mod. Phys.06)

Lagrangian in gyro-centre coordinates ZGY =(t;RGY,v//GY,μGY,αGY)
(Dubin,PF83, Hahm,PF88, Brizard,POP95, Sugama,POP00, Wang,PRE01)

– HGY becomes α-independent (μGY is exact invariant)
– γGY keeps form invariance (canonical transform)
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GyroGyro--centre Hamiltoncentre Hamilton’’s equations equation
Poisson bracket in ZGC and ZGY

Gyro-centre Hamilton’s equation
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Unperturbed particle orbits in tokamak configurationUnperturbed particle orbits in tokamak configuration
Wave particle resonant interaction excites micro-turbulence
Slab, toroidal, and trapped particle modes are excited by 
passing motion, magnetic drift, and toroidal precession 

Passing particles
for large v///v⊥
passing motion＋
magnetic drift

Trapped particles
for small v///v⊥
bounce motion＋
toroidal precession
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Gyrokinetic equationGyrokinetic equation
Gyrokinetic equation

Conservative form of gyrokinetic equation

Phase space conservation

Continuity equation of f transported by incompressible Hamiltonian 
flows in 5D phase space (4D:R,v// + 1D parameter:μ)
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GK Poisson equation for selfGK Poisson equation for self--consistent fieldsconsistent fields
fGC obtained by pull-back transform 

Poisson equation in ZCC

– 2nd term shows polarization density due to FLR effect
Gyrokinetic Poisson equation
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First principles in gyrokinetic equationsFirst principles in gyrokinetic equations

Conservation of phase space volume

Conservation of Casimir invariants C( f ) in Liouville equation

– particle number f, kinetic entropy f log( f ), f 2, etc…
Energy conservation 
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Summary of modern gyrokinetic theorySummary of modern gyrokinetic theory
Gyrokinetic Vlasov-Poisson system

– Spatio-temporal scales are given as ~ρi and ω << Ωi

– Problem is reduced to 5D (4D hyperbolic PDE + 1D parameter)
– Keeps important kinetic effects (FLR, Landau resonance, etc…)
– Keeps all the first principles which the original system has

Phase space conservation
Conservation of particle number, kinetic entropy, etc…
Total energy conservation

Important for avoiding spurious phenomena
Useful for checking the quality of numerical simulations

{ }

( ) ( )[ ]∑ ∫∑ −+=−+∇−

=+
∂
∂

s
ssss

s Ds

ss
s

dBmfne

Hf
t
f

ZqρR *
//

2
02

2 41

0,

δπφφ
λ

φ
α



21

3. Various approaches in gyrokinetic simulations
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Coordinate system in tokamak configurationCoordinate system in tokamak configuration
Tokamak configuration written using poloidal flux function ψ

Field aligned flute perturbation with k//~0 (gyrokinetic ordering)

– Components far from m~nq suffer from Landau damping 
Quasi 2D representation of flute perturbation

– Field-line-following coordinates
(ψ,β,s)

– GK equation can be further
reduced to quasi-3D+1D
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Global modelGlobal model

Global gyrokinetic simulation

– Keep all the first principles
– Both f0 and δf are solved self-consistently
– Full (annular) torus calculation with fixed B.C. 
– Benchmark is difficult because of ambiguities in B.C. (edge, 

axis), heat source model, additional ordering, etc…
Physics application
– Global effects (ω*-shearing, turbulence spreading, avalanches)
– Plasma size scaling (Bohm like features in experiments)
– Advanced tokamak configuration with reversed q profile
– Expensive for electron turbulence, electromagnetic turbulence
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Local flux tube modelLocal flux tube model

Local flux tube gyrokinetic simulation

– Narrow calculation domain along a single field line
– Complete scale separation by neglecting O(ρi/a) effects

, radial periodic B.C.
– Only δf is solved with fixed gradient parameters
– First principles are lost 
– Benchmark results are well converged among several codes

Physics application
– Advanced issues (electron turbulence, multi-scale turbulence)
– Widely used in experimental data analysis
– Difficulty with meso-scale turbulent structures (streamers, etc...)
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x
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Numerical approaches in solving GK equationsNumerical approaches in solving GK equations

Particle/Lagrangian approach (PIC)
– Particle-In-Cell (PIC) method
(Birdsal-Langdon,Hockney-Eastwood,Tajima)

– Nonlinear δf method
(Parker,PFB93,Aydemir,POP94)

– Relatively small memory usage

Mesh/Eulerian approach (Vlasov)
– CFD scheme in 5D phase space

Semi-Lagrangian method
Finite difference method
Spectral method

– Huge memory usage
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Parallel performance of mesh code on Altix3700Bx2Parallel performance of mesh code on Altix3700Bx2
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4. Particle/Lagrangian approach 



28

Physical model of many body systemPhysical model of many body system

Newton-Poisson system for electrostatic one component plasma

Klimontovich equation

– Involve all the dynamics (collisions, multiple body correlation)
– Prohibitive for macro-scale simulation with n0~1019m-3
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From From KlimontovichKlimontovich EqEq. to Vlasov . to Vlasov EqEq..
Introduce statistical average < > for Klimontovich distribution

Statistical average of Klimontovich equation

Lowest order equation in BBGKY hierarchy

– g2 is ~O(εd) effect in discreteness parameter εd=1/(n0λD
3)<<1
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Vlasov limit and super particlesVlasov limit and super particles
Lowest order equation in BBGKY hierarchy

Rosenbluth chopping with eSP=Me, mSP=Mm, and nSP0=n0/M

– Collective motion in l.h.s. is not affected by M
– Rosenbluth chopping (M<<1) naturally lead to Vlasov limit
– Super particles (M>>1) enhance collisions by M times
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Reduce enhanced collisions with finite size particlesReduce enhanced collisions with finite size particles
Newton-Poisson system for PIC simulation

– Shape factor SSP works as low-pass Fourier filter
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Reduce particle weight with Reduce particle weight with δδff PIC methodPIC method
Equation system of δf PIC simulation
(Parker-Lee,PFB93, Aydemir,POP94, Allfrey,CPC03)

– Particle weight can be reduced by δf /f0~0.01
– Df/Dt=0 is assumed in weight evolution equation 
– Monte-Carlo sampling of δf (sampling points can be optimized)

(Hatzky,POP02)
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Comparisons of PIC and Comparisons of PIC and δδff PIC simulationsPIC simulations
Gyrokinetic simulations of ion temperature gradient driven turbulence
G3D code (Idomura,POP00), Lx=Ly=16ρti, Lz=8000ρti, Lx/Ln=0, Lx/Lti=0.42

– δf PIC converges significantly faster than conventional PIC
– Optimization of sampling points accelerates convergence

δf-mxl(33M)
δf-PIC, Maxwellian KSP

~9.9x103 particles/cell-mode
δf-mxl(4M)

δf-PIC, Maxwellian KSP

~1.2x103 particles/cell-mode
δf-opt(4M)

δf-PIC, Optimised KSP

~1.2x103 particles/cell-mode
full-f(268M)

PIC, Maxwellian KSP

~8x104 particles/cell-mode

Time histories of turbulent field energy
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Summary of Particle/Lagrangian approachSummary of Particle/Lagrangian approach

PIC simulation model
– Many body system with heavier particles enhance collisions
– Enhanced collisions are reduced by finite size particle model
δf PIC simulation model
– Monte-Carlo sampling of δf using marker particles
– Particle weight and collisions reduced by δf /f0~0.01
– Significantly faster convergence than conventional PIC 

Issues in δf PIC simulations
– δf and particle weight increase monotonically in time

Limited for short time scale before Df/Dt=0 breaks down
– Df/Dt=0 is severe constraint of δf PIC simulations

Difficult to implement relevant sources and collisions
(Brunner,POP99, Wang,PPCF99, Hu,POP94, Lin,POP04) 
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5. Mesh/Eulerian approach 
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Vlasov simulation based on mesh approachesVlasov simulation based on mesh approaches
Vlasov-Poisson system for electrostatic one component plasma

– All the dynamics determined by f1 and φ1

Semi-Lagrangian approach: mapping of f using Df/Dt=0

– Splitting method, Semi-Lagrangian method, CIP method, etc
(Cheng,JCP76, Sonnendrucker,JCP99, Nakamura,JCP99)

Eularien approach: discretize PDE on phase space grids (xi,vj)

– Spectral method, Non-dissipative/Dissipative finite difference
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Splitting scheme (ChengSplitting scheme (Cheng--Knorr,JCP76)Knorr,JCP76)
Vlasov equation is given by separable Hamiltonian

– Hamilton’s Eq. consists of free motions in x and v
Mapping is splitted into three free motions

– Each free motions are canonical transform
– 2nd order symplectic integrator 
– Semi-Lagrangian method for non-separable Hamiltonian

(Brunetti,CPC04, Grandgirard,JCP06)
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Phase mixing leading to fine scale structures in turbulent flows

Aliasing errors in resolving fine scales with finite grid widths

– Aliasing errors are inevitable in finite difference approach
– Spurious sub-grid oscillations cause numerical instability 

Aliasing errorsAliasing errors

Δx
Δx

x
xi xi+1 xi+2xi-2 xi-1

x
xi xi+1 xi+2xi-2 xi-1
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Dissipative finite difference operatorDissipative finite difference operator
Finite difference approximation for 1D advection problem

– Centered finite difference is non-dissipative, but its dispersive 
errors do not suppress numerical oscillations

– Dissipative error in upwind finite difference smear out not 
only numerical oscillations but also solution itself

– Various less dissipative higher order schemes are available
(Candy,JCP03, Watanabe,NF06, Xu,IAEA06)
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Finite difference method for Poisson bracket operator
(Arakawa,JCP66, Morinishi,JCP97)
– Suppress numerical oscillations by conserving f and f 2

Finite difference operators proposed by Arakawa and Morinishi

– Both operators are conservative for {f,H} and f{f,H}
– Morinishi scheme can be extended to higher dimension
(Idomura,JCP07)

NonNon--dissipative finite difference operatordissipative finite difference operator
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NonNon--dissipative gyrokinetic simulationdissipative gyrokinetic simulation

ITG turbulence simulation
G5D code (Idomura,JCP07)

– FVM: 2nd order centered
finite difference
– Morinishi: 2nd order
Morinishi scheme

(a) Field energy

(b) Error of L1 norm (c) Error of L2 norm∫= ZfdN 6 ∫= ZdfM 62
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Comparison between Vlasov and PIC simulationsComparison between Vlasov and PIC simulations

Gyrokinetic simulations of slab ion temperature gradient turbulence
G3D/G5D (Idomura,POP00,JCP07), Lx=2Ly=32ρti, Lz=8000ρti, Lx/Ln=0, Lx/Lti=0.86

– Results show quantitative agreement up to saturation phase
– PIC simulation show spurious heating due to numerical noise
– Secular accumulation of error is not observed in Vlasov simulation

(Memory usage was ~5 times larger in Vlasov simulation) 

(a) Vlasov code (~255 CPU hours) (b) PIC code (~211 CPU hours)

~2500 particles/cell-mode

field energy

total energy

kinetic energy
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Summary of Mesh/Summary of Mesh/EulerianEulerian approachapproach

Semi-Lagrangian approach
– Vlasov simulation was initiated by splitting method
– Splitting method works as symplectic integrator for Vlasov Eq.
– Semi-Lagrangian method is used for Gyrokinetic Eq.

Dissipative upwind finite difference approach
– Suppress numerical oscillations by numerical dissipation
– Less dissipative higher order schemes are available

Non-dissipative finite difference approach
– Suppress numerical oscillations by conserving f and f 2

– Conserve phase space volume,  f, and f 2

Equivalence of Vlasov and PIC simulations
– Converged Vlasov and PIC simulations give the same results
– Vlasov code may be advantageous in long time simulation  
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6. Collisionless gyrokinetic simulation 
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Collisionless gyrokinetic simulation?Collisionless gyrokinetic simulation?
Collisionless gyrokinetic equation

– Similar to Euler equation which describes ideal fluids (Re=∞)
– Where does turbulent field energy go?

One possible scenario in micro-turbulence simulations

{ } 0, =+
∂
∂ Hf

t
f

Excitation of micro-instabilities

Nonlinear energy transfer in configuration space

Energy sink (Landau damping) at ρi scale 

Phase mixing in velocity space

? ITG ω,γ-spectrum (Dimits,POP00)
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Phase mixing due to parallel streaming motion Phase mixing due to parallel streaming motion 

Free streaming starting from f(x,v,0)=(2π)-1/2exp(-v2/2)cos(kx)

– n damps away with conserving f
– Fine scale structures are continuously produced
– In reality, weak collisions,         , smear out fine structures
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Phase mixing in numerical simulations Phase mixing in numerical simulations 

Free streaming on discrete phase space grids (xi,vj)=(iΔx,jΔv)

– Spurious recurrence phenomena occurs due to aliasing error
– Purely collisionless simulation is limited for t<TR/2
– Most of GK simulations go further with numerical dissipation

How the numerical dissipation affect simulation results?
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Entropy balance relation in Entropy balance relation in gyrokienticgyrokientic equationequation
Slab gyrokinetic equation (drop O(ρ*), local limit                       )

Balance relation of fluctuation entropy δS
(Lee,PF88, Krommes,POP94, Sugama,POP96)
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Three distinct statistical states of entropy balanceThree distinct statistical states of entropy balance
(Watanabe-Sugama,POP02, POP04)

Collisionless limit with zonal flows
– Turbulence is quenched by zonal flows

Collisionless limit without zonal flows
– Quasi-steady W,Q with increasing δS

Collisional case without zonal flows
– Steady state with balanced Q and D
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dt
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dW δ

0,0,0 =+== DQ
dt

dW
dt

Sdδ

dδS/dt

-Q

dW/dt
t
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Asymptotic behavior of Asymptotic behavior of QQ in weak collisional limitin weak collisional limit
Relevant steady state determined by Q+D=0
– Is Q determined by forcing (gradients) or dissipation?

Collisionality ν dependence of diffusivity χ in weak collisional limit

– Collisionless simulation is possible with finite but small enough 
numerical or physical dissipation

– Convergence study for numerical dissipation is important
Grid number, particle number, hyper diffusivity, etc…

Slab ITG turbulence simulation 
(Watanabe-Sugama,POP04)

χ approaches to collisionless 
limit asymptotically
χ is independent of ν for ν<10-4

Q (=D) is determined by forcing
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Summary of entropy balance relationSummary of entropy balance relation

Phase mixing in velocity space
– Parallel streaming continuously produce fine scale structures
– n damps away with conserving f (phase mixing damping)
– Discrete system shows spurious recurrence effect
– To avoid recurrence numerical/physical dissipation is needed

Collisionless limit in gyrokinetic simulations
– Steady solution of entropy balance is given by Q+D=0
– χ approaches to collisionless limit asymptotically with
– Forcing determines heat flux Q at weakly collisional regime  
– Collisionless simulation is possible with finite but small 

enough numerical or physical dissipation

0→ν
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